An Electron EDM Search using Trapped Molecular Ions

Russell Stutz

Laura Sinclair, Aaron E. Leanhardt, and Eric A. Cornell Theory: Edmund R. Meyer and John L. Bohn

JILA, NIST, and University of Colorado

Funding: W.M. Keck Foundation & NSF

Motivation for e EDM Searches

- Direct observation of T-violation (and P-violation).
- Constraints on extensions to the standard model.

Supersymmetry:
$$|d_e| \approx \varepsilon_e (1 \times 10^{-25} e * cm)$$

Multi-Higgs: $|d_e| \approx \varepsilon_H \tan \beta (1-k) (5 \times 10^{-27} e * cm)$

Left-Right: $|d_e| \approx \chi_\ell (3 \times 10^{-26} e * cm)$

Standard Model: $|d_e| \approx 1 \times 10^{-38} e * cm$

S.M. Barr, Int. J. Mod. Phys. A 8, 209 (1993) Left-Right Multi-Higgs Std. Mod. SUSY + d₂ [e*cm] 10-30 10-28 10-32 10-24 10-26 10-34 10-36 10-38 $|d_{e}| < 1.6 \times 10^{-27} e^{*}$ cm

E.D. Commins TI Exp. Limit [PRL 88, 071805 (2002)]

Why Use Molecular Ions?

Why use molecules?

- Large internal electric fields.
- Molecules have closely spaced levels of opposite parity → they can be fully polarized with E~100 V/cm.
- Molecules containing heavy atoms give large relativistic enhancement to the electron EDM signal.

Why use ions?

- lons are easy to trap.
- Potential for long spin coherence times.

Candidate Molecular Ions

HfH⁺ and PtH⁺

- $^{3}\Delta$ ground states \rightarrow ~100 V/cm to fully polarize
- strong atomic 6s orbital character → large E_{eff}

Candidate Molecular Ions

HfH⁺ and PtH⁺

- $^3\Delta$ ground states \rightarrow ~100 V/cm to fully polarize
- strong atomic 6s character → large E_{eff}

- literature values [arXiv:physics/0506038 and refs. therein]
- 1st order estimate

HfH⁺ $^{3}\Delta_{1}$ J=1 ground state

• Ω -doublet splitting ~ 200 MHz

```
200 MHz

200 MHz

300 MHz

30
```

Energies not to scale. Nuclear spin of ½ excluded for clarity.

HfH⁺ $^{3}\Delta_{1}$ J=1 ground state

• Electric field mixes states of opposite parity.

HfH⁺ $^{3}\Delta_{1}$ J=1 ground state

Magnetic field lifts degeneracy between |m|=1 levels.

HfH⁺ $^{3}\Delta_{1}$ J=1 ground state

• Electron EDM shifts the |m|=1 levels in opposite directions in the two Ω -doublet levels.

HfH⁺ $^{3}\Delta_{1}$ J=1 ground state

• Perform electron spin resonance (ESR) frequency measurement via the Ramsey Method.

Photodissociate one spin state and count HfH⁺

- Discharge or laser ablation creates molecular ions.
- Expansion cools ions to rovibrational ground state (T ~ 1 K).

ion source

- Discharge or laser ablation creates molecular ions.
- Expansion cools ions to rovibrational ground state (T ~ 1 K).
- Mass selective ion lens focuses only one isotope into trap.

- Linear Paul trap holds ions for measurement.
- Electric and magnetic fields are applied.
- Rf applied for ESR via Ramsey Method.
- Photodissociation laser pulse to detect spin states.

Paul trap

- Linear Paul trap holds ions for measurement.
- Rotating E-field and quadrupole B-field are applied.
- Rf applied for ESR via Ramsey Method.
- Photodissociation laser pulse to detect spin states.
- Channeltron counts atomic or molecular ions.

Applying Electric & Magnetic Fields

- Electric field defines molecular quantization axis.
- Use a radial electric field that rotates:
 - Fast enough that the ion motion is negligible.
 - Slow enough that the molecular axis adiabatically follows.
- The magnetic quadrupole field gives rise to a radial magnetic field on the ion's circular orbit, B=B'R.

Applying Electric & Magnetic Fields

- Electric field defines molecular quantization axis.
- Use a radial electric field that rotates:
 - Fast enough that the ion motion is negligible.
 - Slow enough that the molecular axis adiabatically follows.
- The magnetic quadrupole field gives rise to a radial magnetic field on the ion's circular orbit, B=B'R.

Sensitivity Estimate

$$|d_e| < \frac{h}{2E_{eff}\tau\sqrt{N}}$$
 • N = 150 ions/shows $E_{eff} = 10^{10} \text{ V/cm}$ • $\tau = 1 \text{ second}$

- N = 150 ions/shot (10^7 ions/day)
- τ = 1 second
- Inverts EDM signal \rightarrow { Flip magnetic field direction. Change Ω -doublet levels.
- Constant EDM signal → {
 Change direction of rotating E-field
 Increase magnitude of rotating E-field

proj. sensitivity: $|d_e| < 6 \times 10^{-29}$ e*cm with 1 day of data

E.D. Commins TI Exp. Limit [PRL 88, 071805 (2002)]

Experimental Progress

- Built a linear Paul trap.
- Laser ablation of HfO₂ target to form Hf⁺ and HfO⁺.
- Photodissociation of CH+ to C+ and H.
- Laser ablated Hf target in expansion, loaded Hf+ ions into trap
- Mass spectrometry of Hf+ with ~1 amu resolution.

Summary

- Proposed an experiment to search for the electron EDM using trapped molecular ions.
- Expect $E_{eff} \sim 10^{10} \text{ V/cm}$.
- Expect spin coherence times ~ 1 second.
- Projected sensitivity $\sim 6 \times 10^{-29} \text{ e}^*\text{cm}$ with 1 day of data.

